*题目: *

输入一个整形数组,数组里有正数也有负数。

数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。

求所有子数组的和的最大值。要求时间复杂度为O(n)。

例如输入的数组为1, -2, 3, 10, -4, 7, 2, -5,和最大的子数组为3, 10, -4, 7, 2, 因此输出为该子数组的和18。

ANSWER: 
A traditional greedy approach.
Keep current sum, slide from left to right, when sum < 0, reset sum to 0.
int maxSubarray(int a[], int size) {
  if (size<=0) error(“error array size”);
  int sum = 0;
  int max = - (1 << 31);
  int cur = 0;
  while (cur < size) {
    sum += a[cur++];
    if (sum > max) {
      max = sum;
    } else if (sum < 0) {
      sum = 0;
    }
  }
  return max;
}